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Application of a Quadratic Free Energy Relationship to Non-additive 
S u bst it uent Effects 
By Myles O'Brien and R. A. More O'Ferrall," Department of Chemistry, University College, Belfield, Dublin 4, 

Ireland 

A quadratic free energy relationship is  formulated in which the reaction constant depends linearly upon substituent 
constant, e.g. in Hammett's formalism p = po + 2ma. The relationship is applied to dual substitution at  equivalent 
positions (X and Y) in the form log kxy/kHH = po(ax + ay) +m (ax + using data from the literature for the bro- 
mination of diphenylethylenes, solvolytic and equilibrium formation of diphenylmethyl carbonium ions, and the ionis- 
ation of 2.7-substituted fluorenes. Non-additivity of substituent effects is quantitatively described and quadratic co- 
efficients 2m/pO2 can be derived without specifying substituent constants. Values of 2m/pO2 measure the sensitivity 
of p and the selectivity of the reaction to changes in reactivity. Relative magnitudes are interpreted in terms of 
variations in transition state structure, resonance saturation, and steric inhibition of resonance. The relationship i s  
compared with Miller's equation, log kXy/k&= po(ax + c r y )  + qax~y, with respect to effectiveness of correlations, 
chemical interpretation, desirability of preserving linear relationships for monosubstitution, and practical application 
to multiple substitution a t  non-equivalent positions. 

SWBSTITUENT effects on reaction rates and equilibria 
commonly involve polar or resonance interactions of 
substituents with full or partial ionic change~.l-~ Slopes 
of free energy relationships then reflect differences in 
charge, at a functional group or a reaction site, between 
reactants and products or reactants and transition state. 
Of special interest are the variations in charge arising 
from variations in transition state structure,4-l2 reson- 
ance ~ a t u r a t i o n , ~ ~ ~ ~ ~  or other causes.12-14 The usual 
linear approximation for free energy relationships fails 
to take account of these, and in this paper we formulate 
a quadratic relationship which does, and apply it to 
reactions showing non-additive substituent effects.15, l6 

The relationship may be expressed as an extension of 
the familiar Hammett equati0n.l The simplest vari- 
ation of p that can be considered is the linear dependence 
of p upon 0 of equation (l)! in which po is the value of p 

P = Po + 2ma 

for a reference substituent, usually hydrogen, and 2m 
is the increase in p for unit increase in 0. Substituting 

log kx/kH = poa + mn2 (3) 
for p in equation (2) and integrating between the limits 
a = 0 and 0 gives the quadratic relationship (3). Equ- 
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ation (3) implies that a linear relationship exists in the 
lirnit that variations in reactivity or 0 are not too large. 

Quadratic extensions of other free energy relationships 
are possible and it is useful to consider (3) as a general 
expression in which substituent and reaction constants 
are undefined. Choice of substituent constants is 
difficult. Ideally reference and sample reactions should 
be so related that chemical dispersion is minimised. 
Less dispersion is acceptable in a quadratic than linear 
relationship because two reaction parameters are deter- 
mined instead of one, but this requirement may conflict 
with the additional requirement that wide ranges of 
reactivity need to be spanned. Ideally, also, the refer- 
ence reaction should involve no dependence of reaction 
constant upon 0. 

Quadratic relationships have most commonly been 
applied to correlations of reaction rates and equilibria, 
notably the Brprnsted relationship for acid-base cataly- 
sis, a quadratic form of which is shown in equation (4). 

(4) 
Here, substituent constants for the reaction studied 
kinetically are defined in terms of the corresponding 
equilibria. Curvature of Brrzrnsted relationships has 
been interpreted by Marcus and others 9917-20 in terms 
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of variations in transition state structure using specific 
reaction models. 

The application we consider involves substituent 
effects a t  more than One molecular position. It may be 
introduced by considering the classic study of variation 
in Brqinsted exponent with substrate reactivity made by 
Bell.21 Bell measured rates of ionisation of a series of 
ketones of widely differing reactivity catalysed by a 
group of carboxylate bases. The variation in strength of 
the bases was small and for each ketone a linear Bronsted 
relationship was obtained. A plot of the exponents p 
against ketone reactivity showed /3 decreasing from 0.88 
to 0.42 for a 108 fold increase in ketone reactivity. 

Bell’s example involves dual substitution, in the sub- 
strate and in the base. Linear free energy relationships 
were obtained because reactivity changes at  one position 
were small and only at  this position was a reaction con- 
stant determined.2I-% More cgmrnmly large reactivity 
changes and variation of reaction constants occur a t  both 
sites of substitution. 

The general case may be illustrated by Bell’s example 
of ketone ionisation hypothetically modified as in Scheme 

B C H z C O R  -t 0 0 -  c) Enolate + phenol 
X Y 

SCHEME 1 

1 to fit a Hammett formalism. There are now two 
reaction constants, for substitution in the ketone and in 
the base , which are distinguished by superscripts , px 
and py. They vary with cs as in equation (3) but now 
depend upon cs a t  either site of substitution, i .e. equations 
(5) and (6) where pox and poY are values of px and p y  when 

PX = PoX + 2mxax + 2mXYaY 

py = PoY + 2mYaY + 2mxyax 

(5) 

(6) 
X and Y are hydrogens and mx , my , and mxy measure the 
increase in px and p y  for unit increase in cs at  a near or 
remote substitution site. The relationship between log 
k and ax and oy is straightforwardly obtained, as shown 
in the Appendix, by integration of equation (7) or, 

p x  = d log k/dax; p y a =  d log k/doy (7) 

alternatively, as noted by Kemp,22 by a Taylor expan- 
sion of log k /kH in terms of ax and my. The expression is 
shown in equation (8) in which the two subscripts for 
the rate constant k x y  indicate the substituents at X and 
Y. 
log kXY/kHH = POX.X + POY,Y + mxoxe + %0Y2 +2mxYoxaY (8) 

Equation (8) is the parent quadratic expression for 
substitution at  two molecular positions and is the 
counterpart of equation (3) for substitution at one. It is 

21 R. P. Bell, E. Gelles, and E. Moller, Pvoc. R a y .  Sac., 1949, 
A108, 308; R. P. Bell and 0. M. Lidwell, ibid., 1940, A178, 88; 
see also refs. 22 and 23. 

2* D. S. Kemp and M. L. Casey, J .  Amev. Chern. Sac., 1973, M, 
6670. 

a formidable relationship and its five linear and quad- 
ratic parameters (pas and ms) usually do not allow applic- 
ation without further simplification. However its 
interpretation is straightforward and without reference 
to it , simpler derived relationships are diacult to inter- 
pret. Moreover simplifications are possible. Bell’s 
treatment is one, and the approximation wx = my = 0, 
leading to Miller’s equation 24 considered below, is 
another. 

The simplification we use occurs when the two positions 
of substitution are equivalent. Then pox = payE mx = 
mp = m and, provided that interactions between sub- 
stituent and reaction site are dominant over interactions 
between substituents (see below), ‘wtxp = m, and equ- 
ation (8) reduces to (9). 

log KXY/KE[H = po{oX + OX) + mrcsX + (9) 

Equations (8) and (9) have the important advantage 
that they may be formulated and solved for quadratic 
coefficients without separating po and CJ or, therefore, 
defining a set of substituent constants. It is assumed 
only that a common set of rrs appIies to the family of 
multiply substituted reagents. This point has recently 
been made by Exner.15 Transforming the quadratic 
variable to x =p0u and adopting Exner’s notation, 
with substituents X and Y denoted i and j, equation (8) 
may be rewritten as (lo), with yjj = log k X Y / k H H ,  

yij = xi + xj + aixi2 + ajxj2 + aijxixj (10) 
xi = pUcsx, Uj = mx/(pox)2, etc., while equation (9) becomes 
(11). Solution of equation (11) for the quadratic 

yij = xi + xj + a(xi + xj)2 (11) 
coefficient a = m/po2 and the ‘ reactivity variables ’ 
X i  = pocsx, and the significance of the derived values, is 
the subject of this paper. 

A final point concerning equation (8) is the connection 
of dual substitution with reactivity-selectivity relation- 
ships. If the selectivity of a substrate, s, is written in 
logarithmic form (12),4~5 it is seen that po = S and p is a 

s = log kx/& (12) 
measure of selectivity, albeit relative to a reference 
reaction. Identification of the slope of a free energy 
relationship as a measure of selectivity is strictly correct 
only for a bimolecular reaction in which selectivity 
changes stem from substitution in the remote reactant, 
i.e. the substrate, but it is sometimes convenient to 
consider it as applying more widely, and this looser 
meaning is used here. Thus variation of selectivity with 
reactivity implies a dependence of p upoh substitution in 
the substrate. Logically, in so far as the distinction 
between reagent and substrate is a formal one, it in 
general implies a dependence also upon substitution in 
the reagent.5 In this sense equation (8) may be regarded 
as a generalised react ivit y-selec tivi t y relationship. 

Payne, and D. Sagatys, J .  Amer. Chem. Soc., 1971, 98, 413. 
A. J. Kresge, H. L. Chen, Y. Chiang, E. Murrill, M. A. 

e4 S. I. Miller, J .  Amer. Chern. SOC., 1959, 81, 101. 
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RESULTS AND DISCUSSION 
Szcbstituent Nola-additivity and the Depsndence of p 

%pow a.-With dual substitution variation of reaction 
constants is most directly revealed by non-additivity 

t H  4- Cl-  
X X gy 
Y w Y a C H C I  - 

(1 1 
SCHEME 2 

of substituent effects. If the p values for two substitu- 
tion sites are independent of substituent the effect of two 
substituents acting simultaneously should be the sum of 
their effects acting independently, i.e. equation (13). 

log K X Y / ~ H H  = log KXHIKHH + log ~ H Y / ~ H H  (13) 
When the ps depend upon a, as in equations (8) and (9), 
the effects are no longer additive, and equation (14) 
applies. Departure from additivity is indicated by 

log ~ X Y I K H H  =: 

deviations from a line of unit slope in a plot of lag 
~ X Y ~ ~ H E  V ~ X S M  log K X H / ~ H H  + log & Y / ~ H .  An 
example is provided by Fox and Kohnstam's data for the 

log AXE/k€€H + log kHY/KHH + 2mXr'XaY (14) 

0 

-5.0 0 i0 
'*k)(+/k"H+ log ' w J k " H  

FIGURE 1 Plot Of log k X y / k H H  VeYSUS log k x H / k H H  + log ~ Y / ~ H H  
for the solvolysis of mono- and di-substituted diphenylmethyl 
chlorides (1).  The straight line is of unit slope through the 
origin 

ionisation of diphenylrnethyl chlorides (1) 25 shown in 
Figure 1. 
The non-additivity is revealed without specification of 

substituent constants. As implied by equation (11) a 
quadratic coefficient describing the variation of reaction 
constant may also be deterniined without specifying a 
values. Rewriting equation (11) in the clumsier but 
more explicit Hammett notation of equation (15), in 
which the reaction variable is pea, a trial value of the 

2s J. R. Fox and G. Kohnstam. Proc. Chem. SOL, 1964, 115. 
m J. Mindl and M, Vecera, Coll. Czech. Chem. Comm..  1973, 88, 

3496. 

quadratic coefficient mlpO2 may be assigned and values of 
pOaL + pour determined by solution of the quadratic. 

Unlike log K X y / k B H J  values of poax + pony should show 
additivity and a best value of m/po2 may be obtained by 
iteration untiI additivity is  optimised. 

For the solvolysis of diphenylmethyl chlorides 2m/pO2 
is found to be -0.077. From this value and the cor- 
responding set of pea,, values of 2maxay may be cal- 
culated and a plot of log Kxn/KHH versus the right hand 

-so 0 '  50 
- 

ICrg kXH / k H H  + bQ kHy /bHH + Zmoj( O;, 
FIGURE 2 Plot of log R X Y ~ R H H  vevsws log ~ X H / ~ H H  + log k a y / k ~ ~  + 

2m&ay for the solvolysis of mono- and di-substituted diphenyl- 
methyl chlorides (1) 

side of equation (14) constructed. As shown in Figure 2, 
in contrast to Figure 1, the results are now well cor- 
related by a straight line of unit slope. 

Values of 2rn/p0a and sets of paa have been determined 
for a number of reactions for which suitable data exist. 
These include solvolyses of diphenylmethyl bromides in 
80% aqueous acetone ,26 equilibrium ionisations of 
diphenylmethanols to diphenylmethyl carbonium ions in 
aqueous sulphuric acidJ2? bromination 0.f diphenyl- 
ethylenes (2) in methanol,l41 28 and equilibrium ionis- 
ations of 2,7-substituted fluorenes (3) to- fluorenyl 

H 3 X H 

( 3  1 

carbanions in dimethyl ~u1phoxide.l~ Values of 2m,/pO2 
are listed in Table 1 and sets of poa values in Table 2. 
Rate constants are given in the original references. 

The magnitude of 2m/po2 reflects the sensitivity of 
the reaction constant to changes in reactivity. It 

J. Mindl and M. Vecera, Coll. Czech. Chem. Comna., 1972, 87, 

88 J.  E. Dubois, A. F. Hegarty, and E. D. Bergmann, J .  Ovg. 
1143. 

Chem., 1972, 87# 2218. 
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represents the fractional increase in p for unit increase in 
p0o, which, in the differential limit 0 --p 0 and p + po, 
is the fractional increase in p for unit increase ih log k. 

and these reactions have the largest values (0.077 and 
0.140). For the ionisation of diphenylmethanols to 
diphenylmethyl carbonium ions, for which no variation in 
transition state structure is possible, a smaller value is 

(16) found (0.063), and for the ionisation of substituted 
Po Po a logk o = o  fluorenes in which resonance saturation alone can have 

effect, the smallest of all (0.036). The solvolysis of 
diphenylmethyl bromides (0.051) at first sight appears 

2a % ?(A) 
With the identification of p with selectivity of equation 
(121, it is in this limit also the fractional increase in 

TABLE 1 
Quadratic coefficients and Miller’s parameter for dual substitution 

Equation (15$ Equation (21) 
7 A > 3 I 

2a = - 2E. a S b  b = l  eb a S b  
2m 
PO2 PO2 

1 Diphenylmethyl chloride solvolysis, 85% (vlv) - 0.077 0.0014 0.101 -0.092 0.0075 0.075 

2 DipHenylmethyl bromide solvolysis, 80% aqueous - 0.051 0.0021 0.024 -0.049 0.0024 0.024 

3 Ionisation of diphenylrnethanols, aqueous -0.063 0.0008 0.031 -0.083 0.0015 0.020 

aqueous acetone, 0 “C 

acetone, 75 “C a 

“€€,SO,, 25 OC 
4 Bromination of diphenylethylenes, methanol, -0.140 0.0046 0.060 -0.185 0.0111 0.086 

as ocf 
6 Ionisation of fluorenes, DMSO -0.036 0.0013 0.044 -0.043 0.0015 0.038 

a Estimated error of the mean. s2 = C[log.(koh,:/kce!c.)]*/(N - 2) where N is the number of substituents. Ref. 25. log = 
Some rate constants were extrapolated from measurements - 6.090 & 0.0047 (G. Kohnstam, personal communication). 

a t  other temperatures. Ref. 27. /Refs. 14 and 28. #Ref. 13. 
Ref. 26. 

selectivity, at least in the wide sense of the term, with 
unit increase in reactivity (log k ) .  

Table 1 illustrates the interpretation of experimental 
measurements of m/p,2. In all cases m/p,,2 is negative, 
indicating an inverse relationship between reactivity and 
selectivity. A factor that could be considered respon- 
sible is variation in transition state structure, especially 
as the observed behaviour is consistent with Hammond’s 
postulate.6 However, this cannot be the sole cause 

out of line, but in this case only meta-substituents 
were used so there is no possibility of a contribution 
to non-additivity from resonance saturation. 

The non-additivity of meta-substituents in the solvoly- 
sis of diphenylmethyl bromides points to the specific 
importance of transition state structure. Although the 
effect is small it contrasts with the close adherence to 
additivity of non-conjugating substituents in the equili- 
brium ionisation of fl~0renes.l~ It is also noteworthy 

Solvolysis of 
diphenylmeth yl 

chlorides 
7 - 7  

4-Me0 5.93 
4-Ph0 3.34 
4-MeOC6H, 2.28 
4-Me 1.69 
4-But 1.25 
4-Ph 1.01 
4-F 0.32 
4-Cl - 0.49 
4-NOg -2.81 

TABLE 2 

Calculated reactivity parameters (p,p) for reaction rates and equilibria a 

diphenylmethyl Ionisation of Ionisation of 
bromides diphenylmethanols fluorenes - - -7 

3-Me 0.22 4-Me0 4.20 2-Me0 -0.17 
3-Br - 1.25 4-Me 1.21 2-PhS 2.23 
3-CF3 - 1.62 3-Me 0.39 2-Br 2.59 

4-C1 -0.84 2-CN 4.86 

Solvolysis of 

-2.17 3-Ph0 -0.29 2-EtaNSOZ 4.12 

a See Table 1 for sources for the reaction data. 

because Table 1 includes equilibria as well as reaction 
rates, and the possibility of resonance saturation and, 
in diphenylmethyl carbonium ions, the inability of both 
rings simultaneously to achieve full conjugation have 
also been recognised as factors responsible for deviations 
from substituent additivity.13* 149 z6 

A crude correlation may be noted between the mag- 
nitude of -2m/po2 and the number of factors capable of 
affecting selectivity in the reaction. For the solvolysis 
of diphenyhethyl chlorides and the bromination of 
diphenylethylenes all three factors can come into play, 

Bromination of 
diphenylethylenes 

4-Me 1.00 
3-Me 0.34 
3-Me0 -0.05 
4-F -0.10 
4-Cl - 0.52 
4-Br -0.59 
3-C1 - 1.21 
3-F - 1.19 
3-NO2 -2.08 

----- 
4-Me0 2.7’s 

that the sensitivity of p for rates of diphenylmethyl 
carbonium ion formation from diphenylmethyl chlorides 
is greater than in the equilibria for their formation from 
diphenylmethanols. Had resonance effects alone been 
responsible one might have expected a more strongly 
negative quadratic coefficient for the equilibrium, in 
which the carbonium ion centre is fully formed. 

These arguments are illustrative rather than definitive. 
For data covering wide reactivity ranges a number of 
factors can affect apparent variations in reaction con- 
stants : changes. in rate-determining step or mechanism 
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within the reaction series, differences in solvent, or 
specific substituent effects. In particular, curvature is 
dominated by substituents having the largest effect, 
and, for carbonium ions, especially the methoxy sub- 
stituent. Although each reaction is characterised by a 
single curvature parameter the value should clearly be 
different for resonating para-substituents and non- 
resonating meta-substituents. The dominance of the 
methoxy substituent is illustrated for the solvolysis of 
diphenylmethyl chlorides by the sensitive plot of log 

slope 2m/pO2, which IS shown in Figure 3 with methoxy 
substituents indicated by closed circles. Other lirnit- 
ations of the analysis are noted below. 

Dependence of Quadratic Coeficients upon Transition 
State Structure.-When changes in transition state 
structure are important a further factor affecting the 
sensitivity of the reaction constant to changes in react- 
ivity can be recognised from consideration of correlations 
of rates and equilibrium constants derived from reaction 
models, such as the hyperbolic dependence of log k upon 
log K considered by Lewis and his co-workers,20 or the 
comparable dependence based on BEBO potential 
energy surfaces derived by shown in equation 
(17), in which k and K are rate and equilibrium con- 

In K 

k X Y I k H H  - (POOX + pony) ~eysus (POOX + PocrY)2, with 

2 ln2 c (--lnE*ln2 ) (17) l n k / k l i m  = - -- c - -cash 

stants, klim is the limiting rate constant for a highly 
exothermic reaction (kT/k in the absolute reaction rate 
approximation), and c is lnklklim when K = 1." 

Marcus' and Lewis' expressions represent quantit- 
ative formulations of Hammond's postulate. Their 

FIGURE 3 Plot of log ~ X Y / ~ H H  - poax - pooy  veysus 
( p o w  + pooy)2 : closed circles denote 9-methoxy substituents 

essential feature is that k varies smoothly with K be- 
tween the limits klim when K is large and K / k l i m  when K is 
small and a limiting rate is achieved in the reverse 
direct ion. 

A corresponding relationship between log k and cr is 
shown graphically in Figure 4. At large values of a the 
limit of high reactivity and low selectivity is approached, 

* Diffusion steps have not been included in equation (17) or its 
representation in Figure 4. In  practice they prevent direct 
observation of any close approach to  klim. 

i.e. k - klim* and p + 0, while at large negative 
values of cr, p - Plim, its low reactivity limit equal to 
p for the reaction equilibrium. When variation of p 
stems solely from changes in transition state structure p 
for the equilibrium is independent of a and, following 
Lewis,20 Figure 4 can be based quantitatively upon 
equation (17) by replacing log K by P1im.s 

log k 
I 

FIGURE 4 An ideal plot of log k 'uevsus a. plim is the limiting 
slope for highly endothermic reactions. The dashed curve 
represents a quadratic fit around CJ = 0 

Our own analysis uses a quadratic relationship 
(represented by the dotted line in Figure 4) to determine 
curvature of the log k versus cr plot at an arbitrary point 
determined by the reactivity of the unsubstituted sub- 
strate. It is plain from Figure 4 that. the curvature of 
our relationship and its quadratic coefficient should 
depend on the reactivity of the unsubstituted substrate. 
For very high or very low reactivities the curvature will 
be small while in intermediate cases it will be large, 
ideally becoming maximised when K = 1. This may 
be expressed quantitatively in terms of equation (17) 
if we replace log K by @limo and recognise that the quad- 
ratic expression of equation (3) may be written as (18). 

Evaluating the differentials from equation (17) gives (19) 
where x = Po/Plim. The quadratic coefficient m is now 
seen to be given by equation (20) and it is apparent that 

(20) 
ln2 (1 - x) m=-- C Po2 

m -+ 0 in: the limits of high and low reactivity, when 
po ---t 0 or Plim and has a maximum value when po = 
pl im/2  a t  K = 0. The coefficient q ' p o 2  measures curva- 
ture in a quadratic approximation to a plot of log k 
versm poo. In the low reactivity limit m/p,2 = 0 also, 
but at high reactivity, at which po -+ 0, m/po2 + co. 

Of course, equation (17) will often not hold even 
qualitatively . Anti- H ammond subs t i t uen t effects are 
commonplace 5910-12 and p for the equilibrium will 
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commonly vary with G. Nevertheless equation (19) 
demonstrates the possibility of relating experimentally 
measured quadratic coefficients to predictions of the 
sensitivity of transition-s t ate structure to substituent 
effects based on reaction models. 

Departures from Quadratic Behaviow.--It is true in 
general that while a linear relationship underestimates 
curvature a quadratic correction, over a sufficiently 
large reactivity range, overestimates it, as is apparent 
in Figure 4. For the solvolysis of diphenylmethyl 
chlorides (Figures 1 and 2) the very reactive p,$’- 
dimethoxy derivative is not correlated, and in the equili- 
brium ionisation of mono-, di-, and tri-$-methoxy sub- 
stituted triphenylmethanols studied by Den0 % the third 
methoxy substituent deviates from a quadratic repre- 
sentation. In both cases the degree of saturation of the 
substituent effect is less than calculated, as expected. 

In the 
bromination of diphenylethylenes the m-nitro-$‘- 
methoxy substituent combination correlates poorly, as 
noted by Hegarty,14 although no comparable deviation is 
found in the solvolysis of diphenylmethyl chlorides ; 
conceivably this is due to interaction of the nitro sub- 
stituted carbonium ion with the neighbouring bromine. 
For the diphenylmethyl chlorides Nishida has noted that 
two m-chloro substituents have less than twice the rate 
retarding effect of 0ne,30 which is the opposite of the 
expected saturation effect. The behaviour appears to be 
characteristic of halogen substituents 14, 26*28 and perhaps 
reflects their opposed G and x substituent components. 
Reversal of the normal saturation effect also occurs in 
other cases: in diphenylmethyl systems when the 
second substituent is placed in the same ring,27930 and for 
electrophilic aromatic substitution in rings containing 
more than two sub~ t i tuen t s .~~  Probably these effects 
are steric in origin. 

Reactivity Parameters p,a.-In addition to m/po2 the 
analysis yields a set of selectivity corrected reactivity 
parameters poo [x in Exner’s notation of equation (lo)] 
which in contrast to log k are additive with respect to 
multiple substitution. 

Values of p0a for the reactions of Table 1 are listed in 
Table 2. They may be used to determine a reaction 
constant po if a suitable set of substituent constants free 
of selectivity changes in their defining reaction is 
available. Practically speaking the inductive constants 
a* provide such a set. They are free of resonance effects 
and are defined principally in terms of equilibria and for 
reactions covering a narrow range of equilibrium con- 
st ants .32* 33 

Other deviations must be of a different origin. 

as N. C. Den0 and A. Schreisheim, J .  Amer. Chem. SOC., 1955, 
77,3051 ; N. C. Deno, H. E. Berkheimer, W. L. Evans, and H. J .  
Peterson, ibid., 1959, 81, 2344. 

3o S. Nishida, J .  Org. Chem., 1967, 82, 2697; E. Berliner and 
M. Q. Malter, ibid., 1968,83, 2595. 

31 J .  E. Dubois, J .  J .  Aaron, P. Alcais, J .  P. Doncet, F. Rothen- 
burg, and R. Uzan, J ,  Amer. Chem. SOC., 1972,94, 6823. 

32 R. W. Taft, jun., S. Ehrenson, I. C. Lewis, and R. E. Glick, 
J .  Amer. Chem. SOL, 1959, 81, 5352. 

33 A. J.  Hoefnagel and B. M. Webster, J .  Amer. Chem. SOC., 
1973, 95, 5357. 

Use of oo is confined to reactions for which meta- 
substituents have been studied (Table l ,  reactions 2 4 ) .  
However, it has been noted already that where curvature 
of the free energy plot is dominated by strongly resonat- 
ing substituents, as in the ionisation of diphenylmethan- 
01s or bromination of diphenylethylenes, the value of 
-2m/po2 is too large for meta-substituents. In these 
cases determining p from values of x = poo has little 
advantage over direct determination from log k ,  parti- 
cularly if the meta-substituents span only a limited range 
of reactivity, as is often the case. Thus for the solvolysis 
of diphenylmethyl bromides, for which 2m/pO2 is based on 
meta-substituents, values of p from p0o and log k respec- 
tively are -3.18 and -3.37. 

On the other hand use of the Yukawa-Tsuno treat- 
ment 2s33 and values of G+ lead to much larger estimates 
of the importance of resonance when based on values of 
poo than when based on log k .  This is because the treat- 
ment makes no attempt to separate resonance effects 
from resonance saturation or variations in transition 
state structure. The estimate based on poo is not a 
superior one because the effects are also not separated in 
the defining reaction.34 This does not imply a limitation 
in the Yukawa-Tsuno treatment but emphasises that 
the derived resonance parameter has a more complex 
significance than a simple measure of resonance. 

Other Correlations of Dual Substitzdiola.-Substitution 
a t  two molecular positions has previously been dealt 
with by correlations 14~26~27~31~35~36 based on Miller’s 

log kXY/kHH = POXOX + PoYGY + p x w  (21) 

(22) yij = xi + Xj + bxixj 

equation (21) * which in Exner’s notation becomes (22) 
where xi = pox~x and b = q/poxpOY. 

The quality of correlations achieved with equation (22) 
and equations (11) or (15) are compared in Table 1. 
The estimated errors in b of equation (22) are greater than 
in a of equation (15) but the variance of calculated from 
observed rate constants in the two cases differs insig- 
nificantly and even slightly favours (22). Satisfactory 
correlations of numerous examples of multiple sub- 
stitution were also obtained by Exner using equation 
(23). 

yij XiXj + c (23) 
It appears that provided there is a sufficiency of 

parameters different correlations are not easily dis- 
tinguished experimentally. The choice of which to use 
then must rest on other considerations, most obviously : 
(i) simplicity, (ii) the desirability of preserving linear 

s4 H. C. Brown and Y .  Okamoto, J .  Amer. Chem. SOC., 1958,80, 
4979. 

36 E. H. Cordes and W. P. Jencks, J .  Amer. Chem. SOC., 1962, 
84, 4319. 

36 C. D. Ritchie, J. D. Saltiel, and E. S. Lewis, J .  Amer. Chem. 
SOC., 1961, 83, 4601; S. A. Khan and A. J .  Kirby, J .  Chem. SOC. 
(B) ,  1970, 1172; N. A. Porter, I. J .  Westerman, T. G. Wallis, 
and C. K. Bradsher, J .  Amer. Chem. SOC., 1974, 96, 5104; N. 
Gravitz and W. P. Jencks, ibid. ,  p. 507; J .  M. Sayer and W. P. 
Jencks, ibid., 1977, 99, 464; H. F. Gilbert and W. P. Jencks, 
ibid., p. 7931. 
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relationships for substitution at  a single position, and 
(iii) the reasonableness of the chemical model implied. 

In  practice multiple correlations used hitherto have 
preserved linearity for substitution at  a single posi- 
tion,15$24v37 i.e. they have included cross terms XiXj but 
not terms in xi2 and Xj2. One approach has emphasised 
more formal aspects of the correlations 15324938 and 
variables other than reactivity, such as temperature 39 or 
spectroscopic properties,15 have been considered. In  
correlations of reactivity however the emphasis has more 
often been upon chemical interpretation 12*14~26~31~35~36*40 

and Miller’s equation and its elaborations have im- 
plicitly been treated as approximations to a quadratic 
equation, equation (8) for example with the constants 
mx and my taken as zero.* 

The practical advantage of Miller’s equation over 
equation (8) is that substituent non-additivity is des- 
cribed by one parameter rather than three, which 
permits its application to substitution at  non-equivalent 
positions. However, if this represents an approximation 
there are good reasons why it  should be recognised. 

In  the first place the approximation can break down. 
There are cases of monosubstitution, notably extended 
Brgnsted  relationship^,^^^^ 17-20 where curvature of free 
energy plots not ascribable to a cross term are found. 
There are also cases where multiple substitution is not 
described by a single parameter,41 and where sub- 
stitution involves equivalent positions the approximation 
becomes unnecessary because the three parameters of 
equation (8) reduce to one. Although equation (21) 
gives as good or better correlation than (15) inspection 
of Table 1 shows that the cross term q/p02 derived from 
the analysis corresponds only crudely to 2m/po2 from (15). 

Secondly, analysis of the data can be carried out so as 
to  minimise the approximation. When dealing with a 
bimolecular reaction in which changes in reactivity a t  
one position are small and at the other are large, as in 
Bell’s example of the reaction of ketones with carboxyl- 
ate bases 21 considered above, changes in the ‘ small ’ 
substituent, X say, while the other, Y, is kept constant 
are represented by a linear free energy relationship (24) 

(24) 

with slope p = pox + qoy. A plot of p for each value of 
Y against by then gives a straight line of slope q, accur- 
ately equal to mxy for ay = 0 and the middle of the sub- 
stituent range spanned by ox. This indeed is the method 
normally used to evaluate q. Where X substituents 
span a larger reactivity range equation (24) effectively 
represents a tangent at an appropriate value of ax. 

On the other hand the implication of equation (21) 

* Formally Miller’s equation is the counterpart for multiple 
substitution of the linear equation (1) for monosubstitution. 
Strictly speaking, equation (8) is itself an approximation to the 
corresponding quadratic expression (see Appendix). 

37 B. Gutbezahl and E. Grunwald, J .  Amer. Chem. Soc., 1953, 
75,  559. 

38 S. Wold, Chemical Scripta, 1974, 5 ,  97; R. I. I-domin, S. A. 
Pivarov, V. I;. Selivanov, B. V. Eidaspov, and S. N. Istomina, 
Org. Reactivity, 1975, 12, 287. 

that a plot of p = pox + qoy versus log K H y  should give a 
straight line of slope q/pOy determinable without specify- 
ing by is clearly not correct for large substituent effects 
at Y :  as expected, for Bell’s data (for which ‘ p ’ is the 
Brarnsted exponent p), such a plot gives a curve. Nor, 
strictly speaking, should the method used in this paper 
yield b (q/pQxpo’) in agreement with 2a (2mxy/poXpoY), 
and indeed it is a disadvantage of treating (21) and (22) 
as approximations that the convenient solution not 
requiring definition of substituent constants is no longer 
applicable. However, if b is determined in this way it is 
clear from Table 1 that i t  is roughly equal to Za, to within 
30% or better. Expressing b in terms of the para- 
meters of equation ( l l ) ,  b = 2a / ( l  - axi) (1 - axj) and 
i t  can be seen that the approximation will be a fair one 
when a is small, or, for unsymmetrical substitution, 
when the coefficients of the direct terms ai and aj of 
equation (10) are small. 

Finally, recognising the approximation makes a literal 
interpretation of Miller’s equation unnecessary. In  
terms of charge distribution at  the reaction site the 
expression implies the existence of two reaction sites, one 
associated with substitution in the substrate, a t  which 
the charge distribution is sensitive to substituents in the 
reagent but not in the substrate, the other associated 
with substitution in the reagent, at which the charge 
distribution is sensitive to substitution in the substrate 
but not in the reagent. I t  has been pointed out before 
that chemically this makes little ~ e n s e . ~ , ~ O  Moreover if 
(21) is an approximation neither need one accept the 
necessary existence of an isokinetic point.42 

Miller’s equation can be given a direct interpretation, 
as noted by Mind1 and Vecera,26 but in terms of inter- 
action between substituents, presumably by inductive or 
field effects, not affecting the reaction site. It is hard 
to know how important such an effect might be but i t  
has been given little previous consideration compared 
with factors affecting p. The greater curvature in the 
correlation of rates than equilibria in the ionisation of 
diphenylmethyl halides and alcohols and the absence of 
curvature for non-conjugating substituents in equili- 
brium ionisations of fluorenes suggest that  i t  is of minor 
importance, at least in systems where the substituents 
are well separated. In  so far as i t  is significant the 
simplification of equation (8) to (15) for equivalent sub- 
stitution sites itself becomes an approximation and the 
values of 2m/pO2 in Table 1 overestimate the substituent 
sensitivities of the reaction constants. 

In  so far as Miller’s expression is consistent with the 
strict, and most limited, definition of a reactivity- 
selectivity relationship the advantages and short- 
comings noted apply to this relationship also. 

Linear Free Eneygy Relationships.-The formulation of 
a quadratic free energy relationship does not of course 

39 Ruey-Long Lii and S. I. Miller, J .  Amer. Chem. SOC., 1973, 
95, 1602; G. S. Krishnarnurthy and S. I. Miller, zbid., 1961, 83, 
3961. 

40 J.  S. Loniasand J. E. Dubois, J. Org. Chem., 1975, 40, 3303. 
4 1  A. Dondoni and G. Barbaro, J . C . S .  Perkzn 11, 1973, 1769. 
42 C. D. Johnson, Chem. Rev., 1975,75,756. 
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imply a practical limitation on linear relationships. On 
the contrary, examples of measurable departures from 
linearity are sufficiently rare that even their existence has 
occasionally been que~ t ioned .~~*4~  

Reasons for the wide applicability of the linear 
approximation have been summarised e l ~ e w h e r e . ~ ~ ~  
Prominent among them is the low intrinsic curvature 
expected of slow  reaction^.^-^ Some further points have 
been noted in this paper. Detection of curvature 
normally requires a wide range of reactivity and a small 
dispersion of experimental points. Families of reactants 
that meet both these requirements, particularly where 
they must apply both to sample and reference reactions, 
are comparatively rare. Where large reactivity changes 
do occur curvature may be absorbed by a parameter 
introduced for other reasons, as in the Yukawa-Tsuno 
relationship. And, in special cases, chemical reasons for 
extended linearity exist l2 or may be suspected.43 

Dual substitution probably offers the most general and 
effective means of detecting variations in reaction con- 
stants l2 and for this reason merits detailed examination. 
Qualitative applications, in which the effect of a struc- 
tural change in substrate, reagent, or leaving group on 
p or a Bronsted exponent is measured, are of course far 
more common than quantitative studies, and are 
governed by the same considerations. 

DETAILS OF CALCULATIONS 

Solution of the equivalent equations (11) and (15) for 
the quadratic coefficient a = m/po2 and a set of reactivity 
parameters xi = poax is conveniently considered in terms of 
a slightly modified form (25) of equation (11) where Yij = 

log k,,/KHH. Assignment of an initial value of a allows 
calculation of a first set of xij from solution of (25). Writing 
the identities (26), with a denoting H, a may be iterated to 
minimise the sum of the squares of the residuals, Cqjz, from 
the difference of observed from calculated yij. The 

xi = xio; xj = xoj (26) 

(27) 

iteration was carried out on an IBM 360-50 computer, but 
values of good accuracy could be quickly obtained with a 
hand calculator by the alternative of optirnising additivity 
in x using W i j 2  from equation (28). 

The values of a and xi from (26) and (27) can be improved 
because equations (26) imply that errors are confined to 
disubstituted reactants. A more even distribution of 
errors was achieved by calculating averaged values of xi 
from equation (29) in which ni is the number of reactions 

xi = 2 (xij - x,,j)/ni (29) 
j 

involving an i substituent. The revised values of xi were 
used to calculate a new value of a from equation (27) using 

48 C. D. Ritchie, D. J. Wright, Der-Shing Huang, and A. A. 
Kamego, J. Amer. Chem. SOC., 1975, 97, 1163; C. D. Ritchie, 
ibid., p. 1170 and references cited. 

the least squares expression (30). The process was repeated 
iteratively and it was found that &ij2 at first decreased and 

then slowly increased. Values of a and x reported in Tables 
1 and 2 correspond to the minimum value of &ij2; they 
differ from the initially calculated values by no more than a 
few percent. 

Test data generated by assuming a hyperbolic dependence 
of y upon x showed that the initial iteration converged 
correctly. An attempt to iterate log kHH and thus to treat 
the experimental value on a par with other data leads to 
consistently low values, a consequence of compensation for 
improved fit of extreme values of kXP for which the quadratic 
relationship overestimates curvature. Mental adjustment 
of the dotted line in Figure 4 indicates how this occurs. 
Values of yij calculated from the experimental kHH therefore 
were used. 

Values of b = q / p o 2  for Miller's expression [equations (21) 
and (22)] listed in Table 1 were calculated in a manner 
analogous to that for values of a.  

APPENDIX 

Equation (8 )  may be derived as follows. For substituents 
a t  position X, rearrangement of (31) and substitution for 

px from equation (5) gives (32), on setting integration limits, 

kx Y 

l k H y  

which on integration yields (33). Similarly, for sub- 

dlogkxy = (PoX + 2mxax + 2mxyay)dax (32) 1: 
logkXY/kHY = Poli"X + WXbX2 + 2mXYaXaY (33) 

stituents a t  position Y, from equation (6) we obtain (34). 

log hXY/kXH = poYaY + mYaY2 + 21nXYbXaY (34) 

Putting aY = 0 and ax = 0 into equations (33) and (34) 
respectively, gives (35) and (36) and substitution for log K H y  

log RXHIKHE = poxax + mxax2 

log ~ H Y / ~ H E  = P O ~ O Y  + ~ Y Q Y ~  

(35) 

(36) 

in (33) from (36) or for log KXR in (34) from (35) gives equation 
( 8 ) .  The equivalent derivations from equations (5) and (6) 
demonstrate what has been assumed, that mxy in (5) and 
(6) are the same. This indeed is a consequence of the fact 
that substituent effects on log k commute, i .e. equation (37) 
applies. 

It should be noted that the above derivation assumes mX 
to be independent of ay and my of ax' as well as that ax 
and ay are mutually independent. Such assumptions are 

( 38) yio = xi + aixi2; yoj = ~3 + ajxj2 

permissible but they are not implicit in the quadratic 
equations for monosubstitution. In Exner's notation the 
equations for monosubstitution are (38) and the fullest 
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expression for dual substitution with which they are com- 
patible is (39), in which a and c are constants.* Equation 

(22), used by Miller, is the corresponding conterpart of 
linear equations for rnonosubstit~tion.2~ 

Yij = Xi + Xj + aixiZ + ajxj' + a j j ~ i ~ j  
[7/2057 Received, 23rd November, 19771 

f cjxjxi2 + cjxixj2 + cipi2xj2 (39) * We thank S. Wold and S. I. Miller for pointing this out. 




